
CS 24000 L04
Week 7 - Memory layout, buffer overflows and 
the dangers of strcpy



Memory Layout

1. Text segment: Contains executable 

instructions

2. Initialized data: Global variables and 

static variables that are initialized by 

the programmer

3. Uninitialized data (bss): Statically 

allocated variables that are declared 

but have not been assigned a value 

yet



Memory Layout

4. Stack: Local variable storage 

5. Heap: Dynamic memory allocation 

usually takes place; requires pointers 

to access it

Stack and heap grow in opposite direction 

and when the pointer meets, free memory 

is exhausted.



strcpy

The strcpy() function does not stop until it sees a zero (‘\0’) in the source string. If 

the source string is longer than the length assigned, strcpy() will overwrite some 

portion of the stack above the buffer. This is called a buffer overflow!

h e l l o w o r l

d \0 ? ? ? ? ? ? ? ?

char buf[10] = “”;
char src[12] = “hello world”;
strcpy(buf, src);

Possible seg 
fault/loss of data



Buffer Overflow vs. Stack Overflow

If a buffer overflow overwrites part of the stack frame, catastrophic effects can occur! If a buffer 

overflow overwrites part of memory outside of a function, it is called a stack overflow, and can 

be used as an attack to...

● Overwrite the return address of a function

● Overwrite the return value of a function

● Depending on the size of the buffer - Even overwrite the text section!

There are countermeasures to this, such as stack canaries and address space layout 

randomization (ASLR), but these are a bit advanced for this topic

Just know that copying too many bytes into a buffer can do some gnarly things



Use strncpy! (char *strncpy(char *dest, const char *src, size_t n)

Copies up to n characters from src to dest. In a case where the length of src is less 

than that of n, the remainder of dest will be padded with null bytes. Prevents buffer 

overflow.

Remember: Terminate dest by ‘\0’.


